What does incipient surge do to the compressor?
Depending on the gas density and rotor sensitivity, it is possible to operate in incipient surge with no symptoms. In fact, most compressors show no evidence of incipient surge. High pressure and high molecular weight services such as injection machines and CO2 compressors tend to be the machines that are more likely to react to incipient surge. In general, if a compressor is affected by operation in incipient surge, it will manifest itself as increased radial vibration. If the vibration is excessive, the compressor can sustain bearing and seal damage.
What does incipient surge do to the process?
Unlike actual surge, incipient surge has no direct affect on the process.
How is incipient surge detected?
Incipient surge does not always occur with sufficient magnitude to allow detection. The pressure pulsations that accompany incipient surge act in the radial direction and have a magnitude of approximately:
These pressure pulsations will create torsional oscillations that are possible to detect if the driver is a motor. A special circuit designed to pass motor current noise in the frequency between about 0.4N and 0.6N can be used to detect incipient surge. This same noise detection circuit can be employed to pick up aerodynamic noise in the gas stream with limited success. Detecting the noise in the flow stream requires measuring the flow very close to the compressor suction with a fast, sensitive analog flow transmitter.
Even with these measures, the efficacy of this technique is not guaranteed. If the flow is measured in the discharge, the incipient surge disturbances are attenuated as they pass through the compressor to the discharge. Since the pulsations act radially, they can become a forcing function for radial vibration.
Most flexible shaft machines have a natural frequency that is in the same frequency range as the pulsation frequency of incipient surge. The coincidence of the incipient surge frequency and the rotor critical speed can lead to an increase in radial vibration if the compressor operates for an extended period in incipient surge. Increases in radial vibration when operating at low flows could be an indication of incipient surge.
How can incipient surge be prevented?
The same technique used to prevent surging the compressor is used to avoid incipient surge: recycle. If a compressor shows sensitivity to incipient surge, the compressor safety margin must be increased to prevent operation in this region. Just like real surge, incipient surge can be accurately predicted if the proper prediction algorithm is used.
Some compressor control system vendors incorporate a technique that increases the surge controller safety margin if high vibration is detected at low flows. This may or may not be an appropriate response since there are numerous causes of increased radial vibration. In general, the rotor sensitivity does not change significantly over time and if a compressor installation is sensitive to incipient surge, the change in vibration at low flows due to flow instabilities should be evident during the commissioning of the surge controls. On compressors that show symptoms of incipient surge (flow instabilities, increased radial vibration), the surge line should be set to the right of this area of instability.
Unlike in the case of actual surge, since occasional short term operation in the incipient surge region is not immediately detrimental to the compressor, using vibration as an indicator for automatic adjustment of the compressor minimum flow line can lead to unnecessary recycle or venting. High radial vibration of the compressor is an operational condition that should be evaluated when it appears on a case-by-case basis to assure that the corrective measure is appropriate.
Does incipient surge lead to “real” surge?
Incipient surge will precede “real” surge as the flow drops, but operating in incipient surge doesn’t lead to a surge. As long as the flow does not drop below the actual surge line, the compressor will not surge, regardless of how long it operates in incipient surge. As mentioned above, most compressors will not exhibit any symptoms when operating in incipient surge. Some compressors don’t experience significant boundary layer separation before surge occurs and some compressors are not excited by pulsations associated with incipient surge.
What does incipient surge do to the process?
In general, if incipient surge is of sufficient magnitude to create problems for the compressor, it will show up as high vibration. If there are no symptoms, there is no real value in attempting to detect incipient surge. Some control system vendors use incipient surge detection as a means of backing up a non-redundant control system. The problem with this approach is it basically provides a notification that the compressor operating point is too low. The output from the detector is not useful for controller action. The incipient surge detector might protect the compressor, but the action of the detector will likely create a process upset. If the compressor application is critical, it makes more sense to use a redundant controller with redundant transmitters. As long as a reliable surge prediction algorithm is employed, a redundant system will not only provide a more reliable and predictable protection system, it allows online repair without compromising the protection of the compressor.